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Abstract

A Bayesian solution is presented to the problem of straight-line
fitting when both wvariables x and y are subject to error. The
solution, which is fully symmetric with respect to x and y, <ontains
a very surprising feature: it requires a informative prior for the
distribution of sample positions. An uninformative prior leads to a
bias in the estimated slope.

1. Introduction

An apparently simple data analysis problem that often arises is that of fitting
a straight line to measurements of two quantities (x,y). Suppose that we have N
such measurements {xj,yj} and that they are each subject to independent Gaussian
errors (ok,oy) (for the moment assumed known). Our task is to find a
relationship of the form:
? = ax +Db, where xj = Qi T oog; oy o= §i + oy .

Note that we are considering a problem in which there is an underlying exact
relation for the (unknown) quantities (ﬁ,?) and that the measurements {xj,y;}
are subject to error. A related, but different problem is the case where there
is wvery little experimental error, but the measurements refer to different
objects with an intrinsic spread of (a,b) values. An example of this type would
be the height and weight distributions of a set of students. Problems of this
latter type are known as regression and, although they are clearly interesting,
they are not the type of problem considered here.

2. The joint distribution

We now begin a careful Bayesian analysis of the straight-line-fitting problem,
and will derive the joint probability distribution of the data and the
parameters. For the case where both variables are subject to error we cannot
avoid introducing the "hidden variables" {Qi} (and §i=axi+b}, which are a set of
N nuisance parameters. We need these before we can even write down the
likelihood function:

pr(x,ylﬁ.a,b,dx,oy) = (4ﬂ20%0§)'N/2 exp -(?(Xi~§i)2/0% + ?(yi-§i)2/0%)/2 .

When we have completed the assignment of the joint p.d.f., we will integrate the
nuisance parameters out of the posterior distribution.

To make further progress we need to refine our thinking about the nature of
the problem. The wvariables x and y may not be of the same type, but it is
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usually as natural to plot x against y as y against x. We must therefore treat x
and y in a symmetrical fashion. Recognising this, a sensible way to treat the
problem is to suppose that there are separate scalings and offsets of the x and
y variables that map them both into a given interval, for example (-1,+l). We
define new scaled variables X and ¥, which are related as follows:

(x-xg) / Ry » ¥ = (y-yo) | Ry ,
RY/RX’ b = yp-axg.

X
a

This procedure closely follows what we do in practice when plotting points on
graph-paper or on a display screen - we ascertain the range of both variables
and plot accordingly. In this way our relationship takes the simple form:

”~

X = 4% .
In what follows we will derive formulae appropriate for the positive sign. In
order to cope with this ambiguity of the sign of the slope, we should, strictly,
always compute both cases, and compare their posterior probabilities. In many
cases it will be obvious which case is better. Two other extreme cases that
might also be worth considering separately are the degenerate cases X=0 and
Y =0.

At this point the reader may be forgiven for thinking that we have gone
backwards; we started with two variables (a,b) and have replaced them by four
(x0,Y0,Rx,Ry). However, we will find that there are great advantages to be had
from this more symmetrical formulation of the problem.

We start our development with the prior for pr(xp,yg,Rg,Ry). Because the
units of x and y are related to Ry and Ry, we can reasonably take Ry and Ry to
be scale parameters, and the offsets xg and yo to be location parameters. We
therefore take the prior as uniform in logRy, logRy, xg and yp:

Prxg,yp,Rx,Ry) dxp dyp dRy dRy « dxp dyg d(logRy) d(logRy) ,
« d{loga) d(ba'llz) d(logR) d(xoallz) ,

where R = (R4 Ry)llz is a symmetric range parameter. We should also, for
completeness, specify some sensible ranges for these parameters. In fact, the
posterior distribution is normalisable over infinite ranges of xg and yp when
there are more than two samples, and we shall return to the question of what
(8min» 8max’) and (Rpin. Rpax) should be later.

The final expression for the prior in terms of our original variables a and
b (and the range and offset of X) is very instructive. In particular, the
(da db a'3/2) part of this prior can be compared to that obtained by Jaynes
(1967) for an allegedly similar problem: he finds (da db (a2 + 1)“3/2), using a
transformation group argument. Whilst I am always very wary of disagreeing with
Ed, I note the following points.

1) the functional relationship derived by Jaynes:

a3 f(a,b) = £(1/a, -bfa) (in the present notation),

is satisfied by both candidate priors... and many others - this functicnal
relationship is too weak to determine the prior uniquely.
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2} The (da db (a2 + 1)'3/2) prior is the correct answer to a different
problem. Suppose that (as in the Bertrand problem (Jaynes 1973)) a straw is
thrown at random onto a piece of square graph paper. Imagine then that this
straw defines a regression line. The rotational symmetry inherent in this second
problem is now sufficient to determine the prior uniquely, but is not relevant
to the straight-line fitting problem, even when the variables are of the same
type. Indeed, for the particular example given by Jaynes, that of the daily
temperature variations at New York and Boston (which is actually a regression
problem, rather than line-fitting), it is rather difficult to understand why we
should want to consider rotation of one axis onto the other.

For these reasons 1T believe that the hypothesis space defined here by
(%0,¥0,Bx Ry) is more uséful for the line-fitting problem than that implied by
Jaynes’ prlor, but it was his prior (and the obvious non-uniqueness of the
functional equation) that stimulated my interest in this problem.

We now arrive at a very interesting stage. The joint p.d.f. can be written
as:

Pr(x,y,%,%X0,¥0:Ry,Ry) = Pr(xg,yg,Ry,Ry) pr(xixo,yo,Rx,Ry) pr(x,y|§,0x,oy),

where irrelevant conditionals have been dropped. Our remaining problem is the
prior pr(xlxo Y0:Bx.Ry) . At first sight it may seem peculiar that our answers
are going to depend on our prior knowledge of the distribution of the "true" %,
and 1 imagine that strong objections will be wvoiced from some directions.
However, my intuition about this matter has now been educated a little, and it
is from this part of the prior that the most unexpected (and pleasing) feature
of the BRayesian solution emerges. Let us take for this prior the independent
Gaussian form:

pr(ﬁlxo,yo,Rx,Ry) = (ZWR%)_N/Z exp —2((§i-x0)le§)lz .

This form can be derived by invoking the principle of Maximum Entropy, using
constraints on <E{x~x0)2> N RZ and <Sx> = N xg. Note also that, because of the
definition of the parameters, thls prior is fully symmetrlc with respect to x
and y. Perhaps the choice of a Gaussian prior for x and y does not really
correspond to our best intuition for this problem; we might prefer to consider
the points spread evenly over the graph paper. However, we shall continue to use
a Gaussian prior, because it makes the algebra tractable, if not actually
pleasant.
We now write down the full symmetric joint p.d.f.:

pr(x,y,§,x0,yg,long,logRyon,oy) =
(873R2020%) N2 exp - 3 ((y-x0)2/RE+(xi-%1) 202+ (yi-y1)2 /08 (2
1

which, using Bayes’ theorem, is then proportional to the posterior distribution
pPr(X,%(,¥0,L108R, logRy |x,7,0%,0y) -

3. Estimation of parameters

At this peint we drawa polite veil over the algebra as we integrate the
nuisance parameters X out of the problem. We note that the X have independent
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Gaussian distributions which lead in turn to Gaussian distributions for xp ard

Jo? ~ ~
Pr(xg,¥p,10gRy, logRy [x,¥,0x,0y) = dex pr(x,%q,y0,108Ry, LogRy [x,y,04,0y) .

This yields estimators for xg and yp, together with their covariance matrix:

x> =L xi/N=%; <yp>»=2yi/N=Yy; or <b> = y-aXx.
i i

<bxf> = (0% + aRZ)/N;  <bxpdyg> = RZ/N;  <dyf> = (o§ + a~iR2)/N,
and

<8b?> = (a§ + aZoZ)/N.

Note that the error estimates for xg and yg depend on the range parameter R, but
that the error in the intercept value b depends only on the measurement errors
oy and oy. We take this opportunity to integrate xg and yg out of the problem
also, and to express the answer in terms of a and R. Finally, we find:

log pr(loga,logR|x,y) = constant - (N-1)/2 log(ao%R2+o%0%+a"lo%R2)

(Vxx(aR2+U§)-2VkYR2+Vyy(a‘lR2+o%))

b

2 (a0§R2+0§0§+a‘10§R2)
where the sample sum-squares are defined:
Ve = 3 (B2 Ty = 3BT Vyy = 3 oD

There is little insight to be gained in developing this formula further
analytically, but it is interesting to note its behaviour in certain limits. The
estimated slope a is close to either Vi [Vyy or Vi /V,., depending on the

. . RS 4 - EY Xy
relative sizes of 0y and oy; its error is determined by the measurement errors,
not the range parameter. TKe range parameter R is similarly determined by either
R% ~ Vyy/N or R% ~ Vyy/N, and its error 6logR ~ N-1/2,

4. Discussion

We now illustrate this formula with a computer example. Figure 1 shows a dataset
of 100 samples together with the best-fitted line. This looks to be a sensible
fit, though we claim little credit for this in itself, because an equally good
job can be done by eye. Figure 2 shows the posterior distribution of the
interesting parameters R, and R,, confirming the presence of a single, well-
defined maximum in the posterior p.d.f. We see also that there are certain
problems of normalisation of the posterior distribution, because the p.d.f.
tends to a constant value as Ry --> 0 and --> @. As By or Ry -->oo the
distribution falls off sufficiently fast to be integrable over "an infinite
range. This therefore raises again the question of a "sensible" cut-off for
Rymin and in+ We can answer the question of what a sensible cut-off means by
investigating just what these cut-offs would have to be so that the contribution
from the quadrant (Ry,R,) --> 0 made a 50 per cent contribution to the posterior
probability integral. For our dataset we find Rypin and Rymin < exp(exp(-1000)).
This is clearly a crazy number, and indicate that we are solving an essentially
well-posed problem.
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Figure 2. Posterior distribution of the range parameters R, and R,. The contour
intervals are logarithmic, each level representing a probability difference of

exp{100).

In other cases, though, we could well imagine that these numbers would not
be so crazy, but instead give us insight into very real dilemmas. For
suppose that the range of the data in one variable, say y, is very nearly
covered by its error Oy. This could easily happen, and implies Ry ~ 0. In this

example,
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case are we really so sure that there is any real variation of y present in the
data? Only our prior probability of the range of Rypip can help us here - Rymin

does matter. Of course, a change of prior for a, such as that suggested by
Jaynes, can make this p.d.f. integrable, but at the cost of disguising what 1is
an essential part of the problem. When the x variation is similar to oy, then
Rymax is also important.

Whilst the assignment of priors for a and b leads to interesting
discussions, it does not actually affect the numerical estimates greatly. It is
a bit like arguing about whether to use V/N or V/(N-1) when calculating standard
deviations; the prior information becomes swamped as we gather more data. There
are, however, much more important matters that are raised by our formula. The
prior pr(xixo Y0 RX,R ) is the most contentious part of the analysis, for the
reason that there are S0 many nuisance parameters. We cannot swamp the X by
gathering more data: we introduce a new % for each sample, We therefore have to
be rather more careful about this prior.

Our first instinct, perhaps, would be to say "¢ is a location parameter
and assign to it a uniform prior over an infinite interval. There is no
mathematical difficulty in this, indeed the analysis is far easier, and
corresponds to our case R --> co. I freely admit that this was the first case
that I tried, and I only abandoned it because it doesn’t work. Indeed, if it had
worked, then this analysis would have stayed in my research notebook as a
trivial application of Bayesian methods. To see that the formula goes wrong,
look at it in the limits oy = 0, R =

log pr(a|x,y,0y) = constant - ((N-1)/2) log a - ((a2Vxx + any)/U§)12 .

The last term is fine, but the first term biasses the answer, increasing a by
one-half of a standard deviation. But this term cannot just be dropped! We could
get rid of it by re-formulating our hypothesis space in a different way, by
dropping the symmetry with respect to x and y. But that in turn would exacerbate
the problem for the complementary case oy = 0, where the present one-half
standard deviation bias would be doubled.

All my Bayesian friends have objected at this point that "there’s no such
concept as bias in Bayesian analysis®. It is true that there is no meaningful,
exact definition of bias except in a frequentist sense. What I mean here is that
the answer given by the R --> w estimator is usually wrong, and in a given
direction. The dictionary calls this "bias".

When a Bayesian calculation gives the wrong answer, it simply means that
the hypothesis space contains wrong information. Here , we assembled the joint
p.d.f. in a systematic way that I recommend be wused in all Bayesian
calculations (Gull 1988), so it is easy to see what went wrong. It was clear at
the time that we needed the prior pr(x|x0,y0 Ry+Ry) for all the N samples
simultanecusly. We might swallow the "location parameter“ argument for the first
sample, but for N all at once it locks very strange. Suppose that the first (N-
1) samples all lie in -3 < x <2.5. Do we really believe that the next sample can
be anywhere in (-0, o)? Our original Gaussian prior amounts to the reasonable
suggestion that we learn about the mean and variance of the X distribution from
the sample. We can of course do this, so that R is in general well-determined by
the sample. Seen this way, we might it think it advisable to learn some other
parameters of the shape of the x distribution as well. This will improve our
results, but probably not very much, and at a terrible price: we would then be
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unable to perform the required integrals analytically.

We can see now why the range parameter R corrects the bias of the estimated
slope. Suppose, again, that oy = 0. The ((N-1)/2 log a) term from the
determinant increases the slope by one-half of a standard deviation, but, as R
is reduced, the v are gently squeezed in range, reducing the slope. When R
reaches its most likely value the bias in the slope is exactly corrected. Seen
the other way around: the range parameter biasses the slope against the weaker
direction of the error bars; the determinant term corrects this. The formula
given earlier seems to work for all combinations of oy and oy.

Can such a simple problem really require so complicated a solution? If all
you want is the answer I can recommend an estimator for a:

(8 Voy = 2 Voo + a~1 Vo)
min = Xy Yy .
(a c% + a1 0%)

This is our answer with R --> oo and the determinant term dropped, so it
will probably work. In can be derived by an ingenious argument (Brian Ripley,
private communication, see also Ripley 1987 and Sprent 1969). The problem is
scaled, not on the range of the data, but on the size of the errors oy and 0y
The range itself is then allowed to go to infinity. If you scale on oy and Oy,
then there is no longer a ’weak’ direction to be biassed, so no problems appear
with the R --> o soluticn. However, we note that a finite range RZ ~ V/N is
still more likely than R = oo, and because the problem is no longer scaled
symmetrically on the range of the data, bias would return if R were reduced. 1In
any case, scaling on the size of the errors looks a bit peculiar if either oy or
0, is =zero. Again, this modification of the hypothesis space seems to be an
attempt to disguise what is a real problem. One is even led to speculate that
scaling on oy and oy, is a subconscious admission that some statisticians are
more interested in the errors than they are in the data themselves!

Finally, we examine the problem of determining the level of the errors oy
and o, if they are unknown. This does not involve any more analysis, because we
have “already been careful to retain all factors of o, and oy from the
likelihood. We assign an uninformative prior for these variables, uniform in
log o, and log oy, so that our previous formula will also be the posterior:
pr(logok,1ogvy,loga,logR|x,y), which is illustrated in Figure 3. As we would
expect, if only one of oy or Ty is unknown, then the data determine the other
extremely well, but it is too much to expect that both can be determined
simultaneously. Rather, it is the combination (ac% + a~1lo2) that is accurately
determined, but the error cannot be very reliably assigned to x or y
individually. However, Figure 3 does show that there is just a little
information about the ratio oy/oy contained in the dataset, presumably
reflecting the fact that the x were uniformly sampled, rather than taken from a
Gaussian distribution. Looking at the data by eye confirms this feeling; for =a
uniform distribution one can guess the relative contributions to the error. This
indicates that there might be some real merit in using a more complicated
hypothesis space, despite the difficulties of the computations involved.

5. Conclusions

The apparently simple Bayesian problem of straight-line fitting with both
variables subject to error contains a subtle twist. The ranges of the variables
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Figure 3. Posterior distribution of o, and oy. The contours are linear.

are usually well-determined by the dataset, equivalent to an "informative" prior
for the sample positions. The use of a uniform, uninformative prior would lead
to a bias in the estimated slope. The use of informative priors containing range
parameters is a common feature of Bayesian analyses of this type: the "Classic"
Maximum Entropy presented here by Skilling (1988) is another example.
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